An Econometric Analysis of the Structure of Commodity Futures Prices

Sergio Lence, Chad Hart, and Dermot Hayes

shlence@iastate.edu chart@iastate.edu dhayes@iastate.edu

Department of Economics

Introduction
Agricultural commodity derivative markets continue to expand as agricultural producers, end-users, and speculators look for risk management and speculative investments. The pricing of derivatives has been the subject of numerous economic articles. Two of the more well-known option pricing models, the Black and Black-Scholes models, assume that the volatility of spot prices increases proportionally to the square root of time. This assumption is reasonable for stocks and currencies, but is inconsistent with mean reversion in commodity prices. Many agricultural commodity markets exhibit mean reversion to production costs (Bessembinder et al.), which suggests that the price volatility around this production cost reaches a maximum value. If this is true, and if price volatility is incorrectly assumed to increase in proportion to the square root of time beyond this maximum value, the fair value of long-term options will be overestimated.

General Representation of Commodity Futures Pricing Model
Futures and spot prices are assumed to be determined by N underlying factors. The risk-neutral evolution process for the N underlying factors Y is given by:

$$dY_t = (K_1 + K_2 Y) dt + \sum_i dW_i,$$

where K_1 is an $(N \times 1)$ vector, K_2 is an $(N \times N)$ matrix, dW_i is an $(N \times 1)$ diagonal matrix with diagonal elements defined as $[dW_i] = a + bY$, a is an $(N \times 1)$ vector, b is an $(N \times N)$ matrix, and $\sum_i dW_i$ is an $(N \times 1)$ vector of independent Brownian motions. This definition of dW_i follows Duffee, and is the transpose of the b matrix defined in most of the literature (e.g., Dai and Singleton). The historical evolution process follows a similar form. Seasonality is incorporated in the model via K_1.

The spot price for the commodity is defined as $P_t = \exp(\theta_0 + \theta Y_t)$ and futures prices for contracts maturing at time $(T + t)$ are given by $F_{T+t} = E[\exp(\theta_0 + \theta Y_{T+t}) | \exp(\theta_0 + \theta Y_t)]$, where θ is a constant, $\theta = \{ \theta_0, \ldots, \theta_N \}$ is an $(N + 1)$ vector of constants, and the coefficients θ_0 and θ are the solutions to ordinary differential equations with boundary conditions.

Method
We utilize a three-factor structure of commodity futures prices. To estimate the models, commodity futures prices for available maturities will be estimated by means of Markov-Chain Monte Carlo (MCMC) methods. MCMC methods have recently become popular for the estimation of continuous-time derivative pricing models because the main historical impediment to their usage (i.e., computer power) is no longer a significant constraint, and they provide important advantages over more traditional methods (Johannes and Polson). For the present study, MCMC methods are particularly well suited for at least two reasons. First, theoretical pricing models are based on constant-time-to-maturity futures prices, whereas observed commodity futures contracts are based on constant maturity dates. The MCMC approach allows us to draw inferences about constant-time-to-maturity futures prices from constant-maturity-date futures price data. Second, MCMC methods allow us to easily handle the facts that spot commodity prices exhibit seasonality and that maturity dates for most commodity futures contracts are unevenly distributed throughout the year.

Results
For corn, soybeans, wheat, cattle, and hogs, MCMC estimation of the model was considered to have converged when the highest Gelman and Rubin’s R_model statistic for the model parameters was smaller than 1.1. Convergence was achieved with between 2 million and 4 million iterations for each commodity.

Acknowledgements
Research funded by USDA-Risk Management Agency

References